Pasternack博客
巴伦简介(第三部分)
基本类型的巴伦
微波射频设计中使用的巴伦类型取决于所需的带宽,工作频率以及该设计的物理结构。差分功率分配用途中可使用的巴伦类型为变压器巴伦、电容和/或磁耦合传输线巴伦、混合耦合器巴伦,而且此类巴伦还可用于功分器及逆变器联用的情形中。巴伦的用途广泛,下至单端信号和差分信号之间的转换,上至模式噪声和信号的消除。对于巴伦而言,最重要的特性为其功率平衡度和相位平衡度。
磁通耦合变压器巴伦为最常见的一类巴伦,其基本上由磁芯及缠绕于磁芯上的两条不同导线构成,其中,通过将初级绕组的一侧接地,在初级侧产生不平衡条件,并在次级侧产生平衡条件。次级侧匝数与初级侧匝数之比可任意设置,从而产生任何所需的阻抗比。磁通耦合巴伦变压器次级侧产生的交流电压n倍于初级侧的电压,且电流相应地为初级侧电流的1/n,从而如上所述,产生n2倍的输出阻抗,其中,n为次级侧匝数与初级侧匝数之比。
上述绕线式磁通耦合变压器的次级绕组中通常设有接地的中心抽头,这一设计可改善输出平衡性。
举例而言,磁通耦合变压器最适合的工作频率为1GHz以下,当在更高频率下工作时,常发生耦合损耗。在微波频率下,变压器内的磁性材料的损耗角正切较高,因此导致较大的信号损耗。因此,通常由缠绕于磁芯上的双路传输线构成的电容性耦合传输线巴伦,如瓜内拉(Guanella)巴伦通过低频磁耦合与高频电容性耦合解决高频下的上述问题。
微波应用中经常使用的一种巴伦为马相(Marchand)巴伦。《各类螺旋巴伦》这一视频对交缠、对称及Marchand螺旋巴伦的概况以及GaAs MMIC平面螺旋巴伦的设计和模拟结果进行了介绍。
经典变压器巴伦
经典变压器也称隔离变压器,其内具有两个缠绕于变压器芯上的独立线圈绕组,该芯既可以为空(空气芯),也可由陶瓷等磁性中性材料、磁导体或软铁构成。其中,初级绕组接收输入信号,而次级绕组输出转换后的信号。在理想的变压器中,无论如何变化,电压与电流的比值永远与绕组匝数比的平方成正比,而且功率(单位为瓦特)永远保持不变。
优点:由于输入绕组和输出绕组之间电气隔离,因此该巴伦可用于连接地平电压存在接地回路问题或电气不兼容问题的电路。
自耦变压器巴伦(电压巴伦)
自耦变压器巴伦具有一个线圈,或具有两个或两个以上的线圈,这些线圈的电接线也缠绕于铁氧体棒芯或环芯上。当仅有一个绕组时,该绕组两端之间必须设置至少一个额外的电气接头或分接点。在该巴伦中,通过一对电连线输入的输入电流起到初级线圈的作用,并用于芯体的磁化。
优点:与其他变压器类型的巴伦不同,自耦变压器巴伦所有末端均可将直流电流接地。
传输线变压器巴伦(扼流圈巴伦)
此类型巴伦有时也称电流巴伦,其可保证两个输出端的输出电流相等,但输出电压不一定相等。同轴电缆内部的电流大小相等且相位相反,因此其所产生的磁场强度相等且方向相反,而且在大部分情况下可相互抵消。当将变压器巴伦与传输线变压器巴伦组合时,可实现极宽的工作带宽。人们常将Guanella传输线变压器和巴伦组合用作阻抗匹配变压器。
优点:扼流圈巴伦可防止额外电流通过电感阻抗沿传输线回流。
延迟线巴伦
延迟线巴伦连有其上不设任何变压器件且具有特定长度的传输线,通常用于较窄的频率范围,其中,所连的传输线长度为该传输线介质内目标频率的四分之一波长的倍数。此类巴伦例如用于同轴连接向平衡天线的转接。
优点:产生180°的相位偏移且提供平衡输入。
自谐振巴伦
在物理材料制成的变压器中,初级绕组和次级绕组之间以及各绕组内的线匝之间存在少量的电容,这些电容形成了人们所不希望的自电容或寄生电容。当巴伦内的自感和自电容的电抗大小相等且性质相反时,将发生谐振。当在等于或高于谐振频率的频率下工作时,任何设计类型的巴伦均表现不佳。巴伦设计时一项考量为尽可能使得其谐振频率远高于工作频率。随着频率升高,寄生电容的阻抗逐渐减小,直至在自谐振频率(SRF)下与理想电感的阻抗相等。
因此,上述电感的作用如同以自谐振频率为临界值的电感器一样,一旦超出该值,阻抗便即急剧上升。而且,该电感器可作为对自谐振频率附近的信号进行衰减的扼流圈。
您可访问https://www.pasternack.com/nsearch.aspx?Category=Baluns&sort=y&view_type=grid,了解Pasternack巴伦产品线的更多信息。